§ 4 连续函数

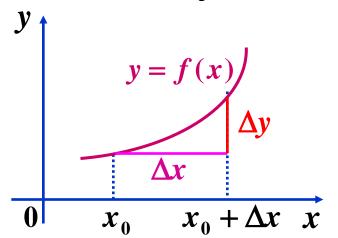
- *现实世界中"连续不断"的现象在数学上的反映,就是函数的连续性。
- *函数连续的直观意义:当自变量在某点处有微小变化时,函数也在此点处有微小的变化。
- *微积分讨论的对象主要是连续函数或只有个别间断点的函数。

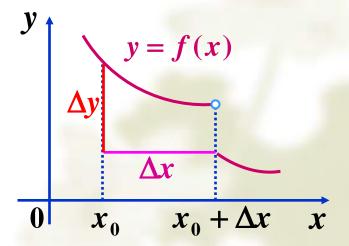
函数在一点的连续性

1、函数的增量

设函数 f 在 $U(x_0, \delta)$ 有定义, $\forall x \in U_{\delta}(x_0)$,设 $\Delta x = x - x_0$, 称为自变量在点 x_0 的增量, 而 $\Delta y = f(x) - f(x_0)$

称为函数 f(x) 相应于 Δx 的增量。





2、定义

- 1) 设函数 f 在 $U(x_0, \delta)$ 有定义, $\Delta x = x x_0$ $\Delta y = f(x_0 + \Delta x) f(x_0) \quad \text{如果 } \lim_{\Delta x \to 0} \Delta y = 0$ 则称函数 f 在 x_0 处连续,或称 x_0 是 f 的连续点。
- \Leftrightarrow 2) $\lim_{x \to x_0} f(x) = f(x_0)$
- \Leftrightarrow 3) $\forall \varepsilon > 0$, $\exists \delta > 0$, $||x x_0|| < \delta$ 时 $(x \in U(x_0, \delta))$ $\Rightarrow |f(x) f(x_0)| < \varepsilon$
- $\Leftrightarrow 4) \forall \{x_n\} \begin{cases} x_n \in U(x_0, \delta) \\ x_n \to x_0(n \to \infty) \end{cases} \lim_{n \to \infty} f(x_n) = f(x_0)$

例1、证明 $f(x) = a^x (a > 1)$ 在 $\forall x_0 \in (-\infty, +\infty)$ 连续 证: 即证 $\forall \varepsilon > 0, \exists \delta > 0, \forall x \in U(x_0, \delta) \ni |a^x - a^{x_0}| < \varepsilon$ $|a^{x}-a^{x_{0}}|=a^{x_{0}}|a^{x-x_{0}}-1|$:: $\lim_{x\to 0}a^{x'}=1$, $a^{0}=1$ 由连续的等价定义得 $\forall \varepsilon' > 0, \exists \delta > 0, \ \forall x' \in U(0, \delta) \ \exists \left| a^{x'} - 1 \right| < \varepsilon'$ $x' \to 0, \exists \exists x \to x_0 \ \forall x \in U(x_0, \delta) \ni |a^{x-x_0} - 1| < \varepsilon$ $\therefore 対于 \varepsilon' = \frac{\varepsilon}{a^{x_0}} > 0 \quad \exists \delta > 0 \quad \exists \left| a^{x - x_0} - 1 \right| < \varepsilon' = \frac{\varepsilon}{a^{x_0}}$

 $\therefore f(x) = a^x (a > 1) 在 x_0 \in (-\infty, +\infty) 连续。$

3、性质

证:
$$: f \cdot g \in C_{(x_0)}$$
 :: $\lim_{x \to x_0} f(x) = f(x_0)$

$$\lim_{x \to x_0} g(x) = g(x_0)$$

$$\lim_{x \to x_0} [f(x) \pm g(x)] = \lim_{x \to x_0} f(x) \pm \lim_{x \to x_0} g(x)$$

$$= f(x_0) \pm g(x_0)$$

 $\therefore f \pm g \pm x_0$ 处连续,同理可证积商。

例2、设 $f(x) = \frac{P_n(x)}{Q_m(x)}$,其中 $P_n(x)$ 和 $Q_m(x)$ 分别为

n 次和 m 次多项式,且 $Q_m(x_0) \neq 0$,

解:对于常数函数 f(x) = C 与 函数 g(x) = x ,容易从定义证明其连续性,然后由连续的四则运算法则可以得到:

$$\lim_{x \to x_0} f(x) = \lim_{x \to x_0} \frac{P_n(x)}{Q_m(x)} = \frac{P_n(x_0)}{Q_m(x_0)} = f(x_0)$$

 $\therefore f$ 在 x_0 处连续。

证:
$$u = g(x) \in C_{(x_0)} : \lim_{x \to x_0} g(x) = g(x_0)$$
即
$$\lim_{x \to x_0} u = u_0$$

又:
$$y = f(u)$$
在 $u_0 = g(x_0)$ 处连续

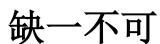
$$\lim_{x \to x_0} f[g(x)] = \lim_{u \to u_0} f(u) = f(u_0)$$
$$= f[g(x_0)] = f \circ g(x_0)$$

则 $f \circ g$ 在 x_0 处连续。

二、函数的间断点

函数 f 在 x_0 连续的三个条件:

- 1) f(x) 在 $x = x_0$ 有定义
- 2) $\lim_{x \to x_0} f(x)$ 存在 (有限)
- 3) $\lim_{x \to x_0} f(x) = f(x_0)$



1、间断点的定义

函数 f 在 x_0 连续的三个条件中有一个不满足,则称函数 f 在 $x = x_0$ 处不连续即间断,并称 x_0 为 f(x) 的间断点(不连续点). 间断点有第一类、第二类间断点。

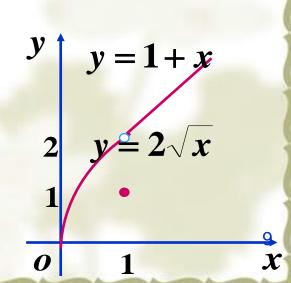
2、第一类间断点

1) 可去间断点 $x_0^{\text{定义}} \equiv \lim_{x \to x_0} f(x)$ 存在,但

$$\lim_{x \to x_0} f(x) \neq f(x_0) \text{ or } f(x_0) \text{ 无意义}.$$

例3、讨论函数
$$f(x) = \begin{cases} 2\sqrt{x} & 0 \le x < 1 \\ 1 & x = 1 \\ 1 + x & x > 1 \end{cases}$$
 的连续性。

解:
$$\lim_{x \to 1^{-}} f(x) = \lim_{x \to 1^{-}} 2\sqrt{x} = 2$$
$$\lim_{x \to 1^{+}} f(x) = \lim_{x \to 1^{+}} (1+x) = 2$$
$$\therefore \lim_{x \to 1} f(x) = \lim_{x \to 1^{-}} f(x)$$
$$= \lim_{x \to 1^{+}} f(x) = 2$$



$$\overline{f}(1) = 1$$
 $\therefore \lim_{x \to 1} f(x) \neq f(1)$

f(x) 在 x = 1 处不连续,为可去间断点。

注意可去间断点可对间断点补充或调整使之连续。

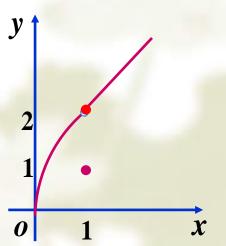
若 $x = x_0$ 是f(x)的可去间断点,可构造

$$F(x) = \begin{cases} f(x) & x \neq x_0 \\ \lim_{x \to x_0} f(x) & x = x_0 \end{cases} F(x) \stackrel{\text{def}}{=} x = x_0 \stackrel{\text{def}}{=} x_0.$$

如上例,令 f(1)=2

则
$$f(x) = \begin{cases} 2\sqrt{x} & 0 \le x < 1\\ 1+x & x \ge 1 \end{cases}$$

在x=1处连续。



2) 跳跃间断点
$$x_0 \stackrel{\stackrel{\stackrel{\sim}{=}}}{=} \lim_{x \to x_0^+} f(x)$$
, $\lim_{x \to x_0^-} f(x)$ 存在, 但 $\lim_{x \to x_0^+} f(x) \neq \lim_{x \to x_0^-} f(x)$

例4、
$$f(x) = \arctan \frac{1}{x}$$
 在 $x = 0$ 处不连续。

解: ::
$$\lim_{x\to 0^+} \arctan \frac{1}{x} = \frac{\pi}{2} \neq \lim_{x\to 0^-} \arctan \frac{1}{x} = -\frac{\pi}{2}$$

∴
$$\lim_{x\to 0} \arctan \frac{1}{x}$$
 不存在,

$$\therefore f(x)$$
 在 $x = 0$ 处不连续。

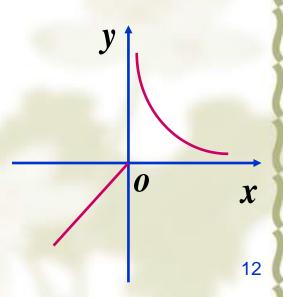
3、第二类间断点

1) 无穷间断点 $x_0 \stackrel{\text{定义}}{=} \exists x \rightarrow x_0$ 时,f(x) 的左右 极限至少有一个无限地增大。

例5、讨论函数
$$f(x) = \begin{cases} \frac{1}{x} & x > 0, \\ x & x \le 0, \end{cases}$$
 在 $x = 0$ 处的连续性。

解: $\lim_{x\to 0^-} f(x) = 0$ $\lim_{x\to 0^+} f(x) = +\infty$

 $\therefore x = 0$ 为 f(x) 的无穷间断点。



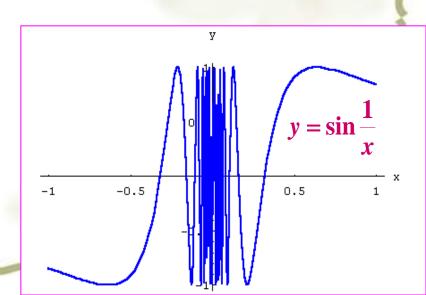
2) 振荡间断点

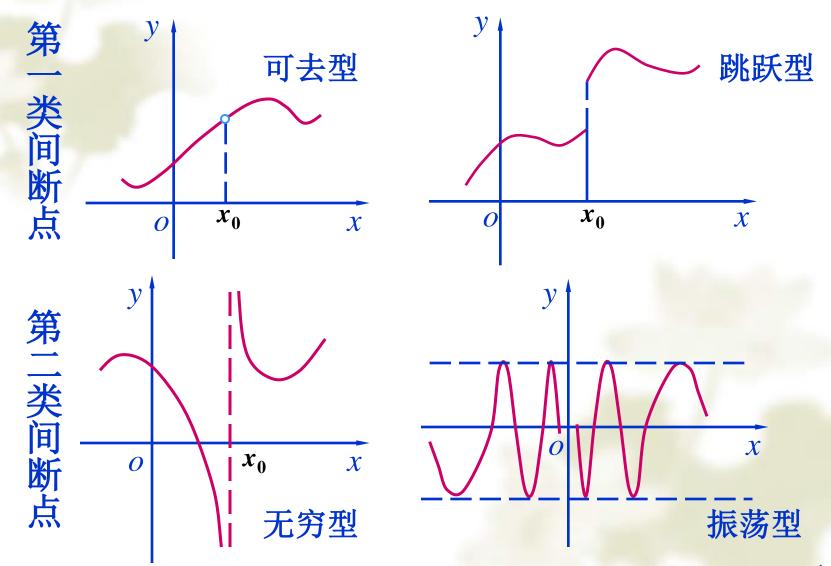
例6、讨论 $f(x) = \sin \frac{1}{x}$ 在 x = 0 处的连续性。

解: : 在x = 0 处无定义,

且 $\lim_{x\to 0} \sin\frac{1}{x}$ 不存在,

 $\therefore x = 0$ 为第二类振荡间断点。





例7、求
$$f(x) = \frac{x^2 + 2x - 3}{x - a}$$
 的间断点(a 为常数)
$$\text{解: } f(x) = \frac{x^2 + 2x - 3}{x - a} = \frac{(x - 1)(x + 3)}{x - a}$$

- 1) 当 $a \neq 1, -3$ 时, $\lim_{x \to a} f(x) = \infty$
 - $\therefore x = a$ 是无穷间断点;

$$\lim_{x \to 1} f(x) = \lim_{x \to 1} \frac{(x-1)(x+3)}{x-1} = 4$$

- $\therefore x = a = 1$ 是 可去间断点;
- $\lim_{x \to -3} f(x) = \lim_{x \to -3} \frac{(x-1)(x+3)}{x+3} = -4$ 可去间断点。

三. 区间上的连续函数

1、定义 f(x) 在 x_0 左 (右) 连续,

$$\lim_{x \to x_0^-} f(x) = f(x_0) \quad \forall x \in U_-(x_0, \delta)$$

$$\lim_{x \to x_0^+} f(x) = f(x_0) \quad \forall x \in U_+(x_0, \delta)$$

定理: f(x) 在 x_0 连续

 $\Leftrightarrow f(x)$ 在 x_0 既左连续又右连续。

2、定义区间上的连续函数

- 1) f(x) 在 (a,b) 连续 $\stackrel{\mathbb{E}^{\chi}}{=} f(x) \text{ 在} \forall x_0 \in (a,b) \text{ 处连续}.$
- 2) f(x) 在 [a,b]上连续

 $\stackrel{\text{定义}}{\equiv} f(x) \times (a,b)$ 内连续,

且在
$$x = a$$
是右连续 $\lim_{x \to a^{+}} f(x) = f(a)$
在 $x = b$ 是左连续 $\lim_{x \to b^{-}} f(x) = f(b)$

连续函数的图形是一条连续不间断的曲线。

定理:一切初等函数在其定义区间内都是连续的。

$$\lim_{x \to x_0} f(x) = f(x_0)$$

$$\downarrow$$
一切初等函数

函数在某点连续的所有性质同样适合于函数在区间上的连续。

例8、求
$$\lim_{x \to \frac{\pi}{2}} In(\sin x + 1)$$

例9、求
$$\lim_{x\to 0} \frac{In(1+x)}{x}$$

一般地,若 $\lim_{x \to x_0} g(x) = a$,而函数 f(x) 在 u = a 处连续,则 $\lim_{x \to x_0} f[g(x)] = \lim_{u \to a} f(u) = f(a) = f\left[\lim_{x \to x_0} g(x)\right]$

四. 闭区间上连续函数的性质

1、有界性定理

设 $f(x) \in C_{[a,b]} \Rightarrow f(x)$ 在[a,b] 上有界即 $\exists M > 0, \forall x \in [a,b], \exists M$

开区间上的连续函数呢?

2、最大最小值定理

设
$$f(x) \in C_{[a,b]} \Rightarrow$$

f(x) 在[a,b] 上必能取到其最大值和最小值,

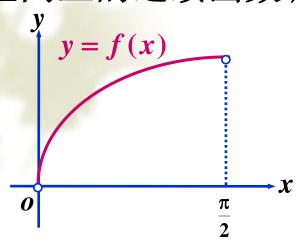
y = f(x)

即必
$$\exists \xi_1, \xi_2 \in [a,b], \exists f(\xi_2) \leq f(x) \leq f(\xi_1)$$

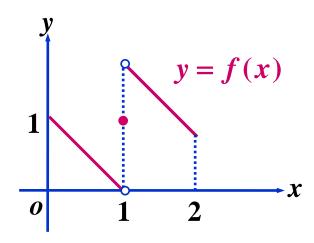
$$f(\xi_1) = \max\{f(x) | x \in [a,b]\}$$

$$f(\xi_2) = \min \{ f(x) | x \in [a, b] \}$$

开区间上的连续函数呢?



在闭区间上有有限个间断点呢?

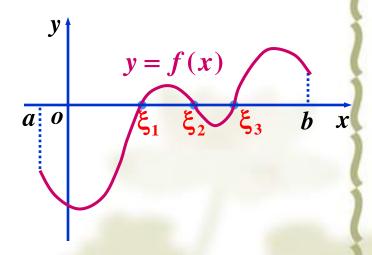


3、零点存在定理

设
$$f(x) \in C_{[a,b]}$$
 且 $f(a) \cdot f(b) < 0$
 \Rightarrow 至少 $\exists - \land \xi \in (a,b), \exists f(\xi) = 0$

几何解释

连续曲线 y = f(x)的两个端点位于x 轴的两侧,则曲线弧与x 轴至少有一个交点。



例10、证明 $x^3 - x - 1 = 0$ 在 (1, 2) 内有一个实根,并求出其近似值,使误差不超过 10^{-1} .

例11、试证实系数三次方程必有实根。

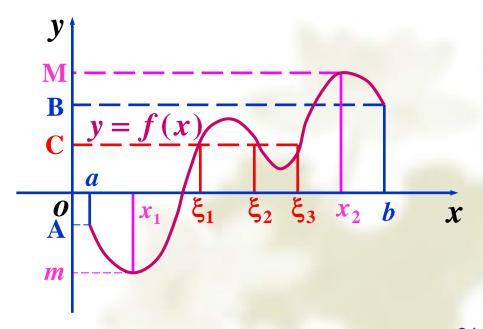
4、介值定理

设
$$f(x) \in C_{[a,b]}$$
 $m = \min\{f(x) | x \in [a,b]\}$
$$M = \max\{f(x) | x \in [a,b]\}$$

则对 $\forall c \in (m,M)$, 至少 $\exists \xi \in (a,b) \ni f(\xi) = c$

几何解释

连续曲线 y = f(x)与水平直线 y = C至少有一个交点。



证:由最值定理, $\exists \eta_1, \eta_2 \in [a,b]$, $f(\eta_1) = m, f(\eta_2) = M;$ 不妨设 $\eta_1 < \eta_2$, 对 $\forall c \in (m, M)$. 作辅助函数 $\varphi(x) = f(x) - c$ $\therefore \varphi(x) \in C_{[\eta_1,\eta_2]},$ $\mathbb{E} \varphi(\eta_1) = f(\eta_1) - c < 0, \varphi(\eta_2) = f(\eta_2) - c > 0,$ 由零点存在定理,至少 $\mathbf{3}$ 一点 $\boldsymbol{\xi} \in (\eta_1, \eta_2) \subset (a, b)$, $\ni \varphi(\xi) = 0$, $\emptyset f(\xi) = c$.

五. 无穷小量在极限中的运用

定理:设在某一变化过程中 $\alpha(x)$, $\beta(x)$ 均为 无穷小量,即 $\lim \alpha(x) = \lim \beta(x) = 0$

1) 若
$$\lim_{x\to 0} \frac{\alpha(x)}{\beta(x)} = 0$$
 记为 $\alpha(x) = o(\beta(x))$ 则称 $\alpha(x)$ 比 $\beta(x)$ 高阶的无穷小量;

2) 若 $\lim_{x\to (\cdot)} \frac{\alpha(x)}{\beta(x)} = A \quad (A \neq 0, A \neq 1)$ 记为 $\alpha(x) = O(\beta(x))$ 则称 $\alpha(x)$ 与 $\beta(x)$ 同阶的无穷小量;

3) 若
$$\lim_{x\to 0} \frac{\alpha(x)}{\beta(x)} = 1$$
 记为 $\alpha(x) \sim \beta(x)$ 则称 $\alpha(x)$ 与 $\beta(x)$ 等阶的无穷小量。

例11、计算
$$\lim_{x\to 0} \frac{e^x-1}{x}$$

结论:
$$1.e^x - 1 \sim x (x \rightarrow 0)$$

2.
$$In(1+x) \sim x \ (x \to 0)$$

例12、计算
$$\lim_{x\to 0} \frac{\sqrt[n]{1+x}-1}{x}$$

结论:
$$\sqrt[n]{1+x}-1\sim\frac{1}{n}x$$

更一般地,
$$(1+x)^{\alpha}-1\sim\alpha x$$
 $(x\rightarrow 0,\alpha\neq 0)$

综上所述: 当 $x \rightarrow 0$ 时,

$$\sin x \sim x$$
, $\tan x \sim x$, $1 - \cos x \sim \frac{1}{2}x^2$,
 $\arcsin x \sim x$, $\arctan x \sim x$, $\tan x - \sin x \sim \frac{1}{2}x^3$,

$$e^x - 1 \sim x$$
, $In(1+x) \sim x$, $(1+x)^{\alpha} - 1 \sim \alpha x$
 $(\alpha \neq 0)$

注意: 等价≠相等

例13、计算
$$\lim_{x\to 0} \frac{1-\cos(x\sqrt{x})}{x\sin(3x^2)}$$

例14、计算
$$\lim_{x\to 0} \frac{\sin x - \tan x}{\sin(x^3)}$$

例15、计算
$$\lim_{x\to 0} \frac{e^{2\tan^2 5x} - 1}{x^2}$$

例16、计算
$$\lim_{x\to 0} \frac{\sin 2x - x^2}{\arctan 3x}$$

例17、计算
$$\lim_{x\to 1} \frac{\sqrt[n]{x}-1}{\sqrt[m]{x}-1}$$

例18、求极限
$$\lim_{x\to 0} \frac{\sin(\sqrt{1+x^2}-1)}{(1+x)^x-1}$$

思考:

求极限
$$\lim_{x\to 0} \frac{\sqrt[3]{1+3x^2} - \sqrt{1+4x^2}}{\sin^2 3x}$$

七. 曲线的渐进线

1、定义: 若 $\lim_{x\to\infty} [f(x)-(ax+b)]=0$ 则称直线 y = ax+b 为曲线 y = f(x) 的渐近线。

2、如何求渐近线

设
$$y = ax + b$$
 是渐近线

$$\iiint_{x\to\infty} \frac{f(x)-(ax+b)}{x}$$

$$= \lim_{x \to \infty} \frac{1}{x} \lim_{x \to \infty} [f(x) - (ax + b)] = 0$$

$$\therefore \lim_{x \to \infty} \frac{f(x)}{x} - \lim_{x \to \infty} (a + \frac{b}{x}) = 0 \quad \text{RP } a = \lim_{x \to \infty} \frac{f(x)}{x}$$

再由
$$\lim_{x \to \infty} [f(x) - (ax + b)] = 0$$
 得 $b = \lim_{x \to \infty} [f(x) - ax]$

$$\therefore a = \lim_{x \to \infty} \frac{f(x)}{x} \quad b = \lim_{x \to \infty} [f(x) - ax]$$

- 1) 当a = 0时, $b = \lim_{x \to +\infty} f(x)$ y = b是y = f(x)的水平渐近线;
- 2) y = f(x) 的垂直渐近线呢? (与x 轴垂直的渐近线)

曲线 y = f(x) 以 $x = x_0$ 为垂直渐近线

$$\Leftrightarrow \lim_{x \to x_0} f(x) = \infty \ (or \ \lim_{x \to x_0^+} f(x) = \infty \ or \ \lim_{x \to x_0^-} f(x) = \infty)$$

例19、求 $y = x + \arctan x$ 的渐近线

例20、求
$$\lim_{x\to\infty} \frac{\sin x}{x(x-1)}$$
 的渐近线

六. 极限计算方法的小结

- 1、代入法 利用函数的连续性、初等函数定义域内的连续。
- 2、对函数初等变换,然后利用极限的四则运算法则
- 3、利用两个重要极限
- 4、利用无穷小量的性质
- 5、利用等价无穷小替代方法
- 6、利用左右极限
- 7、利用 L'Hospital 法则求未定型的极限
- 8、利用夹逼性、单调有界数列必有极限等定理

综合练习

$$1, \; \; \underset{x\to 0}{\mathbb{R}} \left(\cos x\right)^{\frac{1}{\tan^2 x}}$$

$$3、求 \lim_{t\to\infty} x \left(\frac{t-x}{t+x}\right)^t$$

5、计算
$$\lim_{n\to\infty} \left(\frac{\sqrt[n]{a}+\sqrt[n]{b}}{2}\right)^n$$
 $a>0, b>0.$