Conformal invariance of critical lattice models in two-dimensional has been vigorously studied for decades. The first example where the conformal invariance was rigorously verified was the planar uniform spanning tree (together with loop-erased random walk), proved by Lawler, Schramm and Werner around 2000. Later, the conformal invariance was also verified for Bernoulli percolation (Smirnov 2001), level lines of Gaussian free field (Schramm-Sheffield 2009), and Ising model and FK-Ising model (Chelkak-Smirnov et al 2012). In this talk, we focus on connection probabilities of these critical lattice models in polygons with alternating boundary conditions.
This talk has two parts.
• In the first part, we consider critical Ising model and give the crossing probabilities of multiple interfaces. Such probabilities are related to solutions to BPZ equations in conformal field theory.
• In the second part, we consider critical random-cluster model with cluster weight $q\in (0,4)$ and give conjectural formulas for connection probabilities of multiple interfaces. The conjectural formulas are proved for q=2, i.e. the FK-Ising model.
69.jpg